Enough Time for Life: Part I

As you may know if you frequent this blog often, I spend a fair amount of time writing about planets that astronomers spend a lot more time discovering. My main interest in these worlds lies with their ‘habitability’, a rather esoteric and loosely defined term that is primarily concerned with describing how broadly livable these planets are,  in a very Earthcentric way. Planetary habitability is an extremely complex recipe that turns climatic, planetary and geological ingredients, added in just the right quantities, into a warm, salty, non-toxic broth. Perhaps life on other planets, if it exists, has completely different requirements, but without a good sample of inhabited planets teeming with life we can’t really be sure and have to make this assumption for now.

A reasonably good place to start looking for planets hosting these conditions is the ‘habitable zone‘ of stars, a concept that I’ve discussed before. The habitable zone describes an area around a star where a planet, if it was discovered to be orbiting within this area, could have liquid water on its surface. Stars of different masses and classifications have different habitable zone distances, and not all planets in the habitable zone are habitable: some may be too massive, others too small, many wouldn’t have the correct mix of atmospheric constituents, others may have no atmosphere at all. In fact, there are more reasons to think that planets, whether inside or outside the habitable zone, are more likely to be completely unsuitable for (Earth-like) life than there are to consider the opposite.

However, whilst habitability is variable in space, it is almost certainly variable in time as well. The habitable zone isn’t a fixed distance: its boundaries move outwards as the star undergoes main-sequence evolution, growing larger and hotter over time. More massive stars (classifications F, G and K) have the shortest main sequence lifetimes and therefore the habitable zone boundaries around these stars migrate outwards at a proportionally more rapid rate. Low mass stars, M-stars for example, have extensive lifetimes on the order of tens or hundreds of billions of (Earth) years, and therefore their habitable zones are relatively more static in time.

The Habitable Period: A Measure of Habitability Through Time

The habitable zone for stars of different masses at the point of entry on to the ‘main sequence’. The horizontal axis shows the distance from the star in astronomical units (AU) on a logarithmic scale. The dashed boundaries illustrate the uncertainty of the HZ when cloud cover is taken into account.


The habitable zone for stars of differing masses at the end of their main sequence evolution.

The time that a planet spends within the habitable zone can be considered its ‘habitable period‘. The habitable period of a planet is an important factor when considering the possibility of life on these worlds. A planet with a long habitable period is perhaps more likely to host complex organisms that require more time to evolve, if we make the assumption that evolution by natural selection is a universal constant, operating in a similar way in potential exobiological systems as it does on Earth. An alternative means of speciation has not been discovered on Earth, and natural selection has withstood 200 years of intense scientific scrutiny and analysis relatively unscathed. As before, with a sample of one assumptions have to be made.

Building on this idea, if it is possible to determine the extent of the habitable zone at the beginning and end of the star’s main sequence lifetime using modelling techniques, and estimate the approximate age of the star, then a rate of outward migration of the boundaries of the habitable zone can be derived and quantifying the habitable periods of these planets becomes a possibility.

The figures above go some what to illustrating this point: the image on the left shows the extent of the habitable zone of different stars at the stage at which the star enters the ‘main sequence‘ – the beginning of its hydrogen-burning life. I’ve included the Earth, Mars and the confirmed habitable zone exoplanets from the Habitable Exoplanet Catalog and plotted them at their semi-major axes. Note that the Earth and Kepler 22b are comfortably within the warming embrace of their respective suns’ habitable zone at this stage, whilst the other planets remain fairly peripheral. The figure on the right shows the same planets in the same relative orbital locations, but at the end of their star’s lives. Earth, Kepler 22b and most of the other planets, with the welcome exception of Mars (not likely to be at this location in the future anyway because of its chaotic orbit), have all been relegated to the dangerous and inhospitable ‘hot zone’ nearest the star as the boundaries of the habitable zone migrated past their positions at some point during stellar evolution. The rate at which the imaginary boundaries move outwards is proportional to the mass of the star, as discussed above.

I used a very simple model to estimate exactly how long these planets will spend in the habitable zone and I’ll post the results in the coming days.

About these ads

2 comments on “Enough Time for Life: Part I

  1. Pingback: Recent Posts | the II-I- blog

  2. Pingback: Enough Time for Life: Part II | the II-I- blog

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s