The Null Hypothesis: When Do We Declare a Barren World?

This is a guest post by Euan Monaghan, a post-doctoral researcher in the Department of Physical Sciences at The Open University, where he studies the habitability of the subsurface of Mars. You can find him on Twitter


Astrobiology is the search for life elsewhere in the universe. When this search is focussed on a specific world, there’s a chance—quite a good chance it would seem—that this search will turn out to be fruitless; that there will be no life to be found except the terrestrial life we bring along with us in the process. But can we ever say for sure?

This piece is focussed on Mars, but the idea applies to all worlds targeted for astrobiological exploration. The particular habitats on Europa, Titan or Kepler-62e might be different to those found on Mars, but the question is the same everywhere: does this world host life?

Scientific progress has made the martians of our imagination progressively smaller and more insignificant. No longer the grand canal builders of old—no longer even considered to be multi-cellular—the optimistic amongst us imagine microbes in briny pockets kilometres beneath a hostile surface; their presence deep underground given away by a subtle disequilibrium in the gases of Mars’ tenuous atmosphere. If the martians are there, they’re in hiding.

As we gain a greater understanding of the geologic and climatic history of Mars, a subterranean biosphere doesn’t seem so unreasonable. While Mars was likely warm and wet long before the Earth was, it is also smaller and so cooled faster. It couldn’t hold onto a thick, warming atmosphere for long and so its surface water was gradually lost, both out into space and down into the planet’s interior, to be fixed within the structure of minerals, frozen as permafrost or trapped in groundwater aquifers beneath layers of ice. And as Mars cooled and the water descended, so did the planet’s habitable zone, until it was hidden from view.

Recurring slope lineae in Coprates Chasma may be due to active seeps of water; a clue to a possible subsurface biosphere? (Credit: NASA/JPL/University of Arizona, HiRise)

The habitability of any extra-terrestrial environment is estimated through the study of life adapted to extreme conditions on the Earth. This ‘envelope of life’, with its upper and lower boundaries of temperature, pressure, salt tolerance and so on, is expanding all the time. The relatively recent discovery of our own deep subsurface biosphere, as well as its remarkable diversity and extent, has broadened our concept of what we consider to be a habitable environment. It is with this ever-more subtle knowledge of our own world that we turn back to the planets in our search for life.

The next logical step in that search, for Mars at least, is a detailed study of its atmosphere. In early 2016 the European Space Agency will launch a mission to do just that: the ExoMars Trace Gas Orbiter (TGO) will perform a more comprehensive inventory of the martian atmosphere and the respective abundances of its gases than ever before. It is hoped that the results of this study will provide an insight into active processes occurring deep underground. But then again there is the very real possibility that the TGO will arrive in orbit and find no signs of life, however tentative. The null hypothesis—Mars is a barren world—would still stand. Should we then give up on our search, or do we commit time and resources to a strategy of ever more sophisticated astrobiological exploration, all the while striving to prevent accidental contamination by terrestrial life?

The inevitable moments when we decide to re-focus our search for life beyond the Earth should not be considered moments of pessimism. The universe has too much potential.

Lost in Space: Finding a Sense of Place in the Cosmos

This is a guest post by Sean McMahona PhD student in the School of Geosciences at the University of Aberdeen. Sean’s research applies geological perspectives and techniques to astrobiological problems ranging from the origin and distribution of life in the universe to the origin of methane in the Martian atmosphere. Visit his excellent blog, Fourth Planetfor more on his research, his impressive space art and photography, and writings.


“Though a planetary perspective is a magnificent and enriching thing, places, not planets, are the core of human experience. It is from places that we build our world.”

—    Mapping Mars, Oliver Morton (2002)

“He stood thereby, though ‘in the centre of Immensities, in the conflux of Eternities,’ yet manlike towards God and man; the vague shoreless Universe had become for him a firm city, and dwelling which he knew.”

—    The French Revolution: A History, Thomas Carlyle (1837)

Last year, in a car park in Aberdeen, I saw Jupiter through a telescope for the first time. What I saw was not the familiar red-spotted giant from the Nasa photographs, that great bronze bauble marbled with cream like artisan coffee—no. What I saw, through a gap in the Scottish clouds, was a pale round smudge with three white specks for moons. It was not dramatic but it was a strange and lovely moment. It reminded me that Jupiter, the other planets, and even the distant stars and galaxies, are no less real, no less here—albeit further away—than Scotland, clouds, car parks, and me. They are on the same map, sharing our geography, our humdrum commonplace reality.

In our eagerness to be inspired by astronomical imagery, we are often tempted to forget this fundamental sameness. Documentaries about the cosmos besiege us with spectacular graphics, rousing orchestral music and rapturous, lyrical narration. In the tradition of Carl Sagan, we are urged to adopt a “cosmic perspective”, in which the Earth dwindles to an insignificant1 “mote of dust suspended in a sunbeam”. Meanwhile, digital space art is reliving the Romanticism of 19th Century painting: balance, proportion and subtlety are abandoned in favour of vertiginous perspectives, extremes of colour and contrast, and sublime, mystical lighting: silhouetted planets disintegrate into vast purple nebulae bristling with crepuscular rays. Thus, it seems that an ecstatic, almost mythical vision of outer space, emphasizing above all its spiritual and aesthetic grandeur, has taken root in popular culture.

McMahon juvenilia. This is what I thought space looked like when I was 17. I have since changed my mind.

McMahon juvenilia. This is what I thought space looked like when I was 17. I have since changed my mind.

Maybe that vision has some role to play in attracting public interest to the space sciences. But paradoxically, it can make the “wonders of the universe” seem less accessible than ever; profound, ethereal, miraculous, even unreal. It bolsters the popularity of astrology by reinforcing the illusion that planets and stars are unfathomable, heavenly beings: much more plausible aids to divination than ordinary material things. Most worryingly, it can give the impression that space exploration is an esoteric spiritual quest, unrelated to ordinary human problems and unfit for serious attention from media, government or young, career-minded scientists.

Perhaps the “numinous” view of space reflects a deeper failure to grasp the implications of the Copernican Revolution. Somehow, I suggest, we still make some kind of basic ontological distinction between the heavens and the Earth2. Consequently, we are unable to feel truly embedded in our extraterrestrial environment, which remains a transcendent, detached and coldly beautiful space rather than a homely, material, lived-in place. The Apollo programme helped to bridge that gap for a generation, transforming the moon from an icon of celestial indifference into a humanly intelligible landscape—rather like a golf course, in fact, replete with bunkers, buggies, flags and footprints3. Revealingly, many people today find it easier to believe that the whole thing was a hoax.

A Summer 2012 photograph by NASA's Curiosity rover inside Gale Crater on Mars.

A Summer 2012 photograph by NASA’s Curiosity rover inside Gale Crater on Mars.

The sharp, vivid photographs taken by NASA’s Curiosity Rover can have a similar effect, reminding us that the martian surface is a real place, not so different in appearance from the rocky deserts of Libya or the High Arctic. Despite our unsophisticated cultural relationship with outer space—a mixture of mythology, indifference and reverence—a crewed mission to Mars in the next thirty years now seems very likely. I hope that mission will allow the next generation to feel more at home in the universe, more fully at ease with the fact that even Milton Keynes4 is part of the Milky Way. What we stand to gain is not an exalted “cosmic perspective” but simply a richer, more expansive sense of place, of where it is that we live our lives.


1     This strain of rhetoric characteristically fails to observe that human beings adjudicate the significance of the universe, not the other way around.

2      Douglas Adams exploited this confusion to humorous effect, juxtaposing ordinary things with cosmic phenomena: the “restaurant at the end of the universe,” the “whelk in a supernova” and so on; “you may think it’s a long way down the road to the chemist but that’s just peanuts compared to [the size of] space”.

3      Some readers will know that the American astronaut Alan Shephard did in fact play golf on the moon; two golf balls remain there.

4       Milton Keynes is an architecturally unprepossessing English town and home to the Open University, where much British space research has been conducted.

The hunt for an Exo-Earth: How close are we?

This is a guest post by Hugh Osborn, a PhD student in the Astronomy and Astrophysics group at the University of Warwick. Hugh’s research involves using transit surveys to discover exoplanets. Visit his excellent blog, Lost in Transitsfor more on exoplanets, their detection and his research.


In the 1890s Percival Lovell pointed the huge, 24-inch Alvan Clark telescope in Flagstaff, Arizona towards the planet Mars. Ever the romantic, he longed to find some sign of life on the Red Planet: to hold a mirror up to the empty sky above and find a planet that looked a little bit like home. Of course, in Lovell’s case, it was the telescope itself that gave the impression of life, imposing faint lines onto the image that he mistook for canals. But, with Mars long since relegated to the status of a dusty, hostile world, that ideal of finding such a planet still lingers. In the great loneliness of space, our species yearns to find a world like our own, maybe even a world that some other lineage of life might call home.

51 Pegasi: Home to the first exoplanet discovered by humans (Copyright: Royal Observatory Edinburgh, Anglo-Australian Observatory, and AURA)

A hundred years after Lovell’s wayward romanticism, the real search for Earth-like planets began. A team of astronomers at the University of Geneva used precise spectroscopy to discover a Jupiter-sized world around the star 55-Peg. This was followed by a series of similar worlds; all distinctly alien with huge gas giants orbiting perishingly close to their stars. However, as techniques improved and more time & money was invested on exoplanet astronomy, that initial trickle of new worlds soon turned into a flood. By 2008 more than 300 planets had been discovered including many multi-planet systems and a handful of potentially rocky planets around low-mass stars. However, the ultimate goal of finding Earth-like planets still seemed an impossible dream.

In 2009 the phenomenally sensitive Kepler mission launched. Here was a mission that might finally discover Earth-sized planets around Sun-like stars, detecting the faint dip in light as they passed between their star and us. Four years, 3500 planetary candidates and 200 confirmed planets later, the mission was universally declared a success. Its remarkable achievements include a handful of new terrestrial worlds, such as Kepler-61b and 62e, orbiting safely within their star’s habitable zones. However, despite lots of column inches and speculation, are these planets really the Earth 2.0s we were sold?

While such worlds may well have surfaces with beautifully Earth-like temperatures, there are a number of problems with calling such worlds definitive Earth twins. For a start the majority of these potentially habitable planets (such as Kepler-62e) orbit low-mass M-type stars. These are dimmer and redder than our Sun and, due to the relative distance of the habitable zone, such planets are likely to be tidally locked. The nature of such stars also makes them significantly more active, producing more atmosphere-stripping UV radiation. This means, despite appearances, ‘habitable’ planets around M-dwarfs are almost certainly less conducive to life than more sun-like stars.

Even more damning is the size of these planets. Rather than being truly Earth-like, the crop of currently known ‘Habitable planets’ are all super-Earths. In the case of Kepler’s goldilocks worlds, this means they have radii between 1.6 and 2.3 times that of Earth. That may not sound too bad, but the mass of each planet scales with the volume. That means, when compression due to gravity is taken into account, for such planets to be rocky they would need masses between 8 and 30 times that of Earth. With 10ME often used as the likely limit of terrestrial planets, can we really call such planets Earth-like. In fact, a recent study of super-Earths put the maximum theoretical radius for a rocky planet as between 1.5 and 1.8RE, with most worlds above this size likely being more like Mini-Neptunes.

So it appears our crop of habitable super-Earths may not be as life-friendly as previously thought. But it is true that deep in Kepler’s 3500 candidates a true Earth-like planet may lurk. However the majority of Kepler’s candidates orbit distant, dim stars. This means the hope of confirming these worlds by other techniques, especially tiny exo-Earths, is increasingly unlikely. And with Kepler’s primary mission now ended by a technical fault, an obvious question arises: just when and how will we find a true Earth analogue?

Future exoplanet missions may well be numerous, but are they cut out to discover a true Earth-like planet? The recently launched Gaia spacecraft, for example, will discover hundreds of Gas Giants orbiting Sun-like stars using the astrometry technique, but it would need to be around a hundred times more sensitive to discover Earths. New ground-based transit surveys such as NGTS are set to be an order of magnitude better than previous such surveys, but still these will only be able to find super-Earth or Neptune-sized worlds.

The Transiting Exoplanet Survey Satellite (TESS) (

Similarly, Kepler’s successor, the Transiting Exoplanet Survey Satellite which is due to be launched in 2017, will only be able to find short-period planets with radii more than 50% larger than Earth. HARPS, the most prolific exoplanet-hunting instrument to date, is also due for an upgrade by 2017. Its protégée is a spectrometer named ESPRESSO that will be able to measure the change in velocity of a star down to a mere 10cms-1. Even this ridiculous level of accuracy is still not sufficient to detect the 8cms-1 effect Earth’s mass has on the Sun.

So despite billions spent on the next generation of planet-finders, they all fall short of finding that elusive second Earth. What, precisely, will it take to find this particular Holy Grail? There is some hope that the E-ELT (European-Extremely Large Telescope), with its 35m of collecting area and world-beating instruments will be able to detect exo-earths. Not only will its radial velocity measurements likely be sensitive enough to find such planets, it may also be able to directly image earth-analogues around the nearest stars. However, with observing time likely to be at a premium, the long-duration observations required to find and study exo-earths could prove difficult.

Alternatively, large space telescopes could be the answer. JWST will be able to do innovative exoplanet research including taking direct images of long-period planets and accurate atmospheric spectra of transiting super-Earths and giants. Even more remarkably, it may manage to take spectra of habitable zone super-Earths such as GJ 581d. But direct detection of true Earth-analogues remains out of reach. An even more ambitious project may be required, such as TPF or Darwin. These were a pair of proposals that could have directly imaged nearby stars to discover Earth-like planets. However, with both projects long since shelved by their respective space agencies, the future doesn’t look so bright for Earth-hunting telescopes.

After the unabashed confidence of the Kepler era, the idea that no Earth-like planet discovery is on the horizon may come as a surprisingly pessimistic conclusion. However not all hope is lost. The pace of technological advancement is quickening. Instruments such as TESS, Espresso, E-ELT and JWST are already being built. These missions may not be perfectly designed to the technical challenge of discovering truly Earth-like planets, but they will get us closer than ever before. As a civilisation we have waited hundreds of years for such a discovery; I’m sure we can hold out for a few more.

Parent of the Perseids

Around this time every year, the Earth, on her year long trundle around the Sun, passes through the Perseid cloud of cometary debris. The resulting month long encounter produces arguably the most prolific and spectacular meteor shower for northern observers – the Perseids.  As many as 100 “shooting stars” an hour may be visible at its peak in mid-August and the shower is eagerly awaited by sky-gazers for it’s dazzling and reliable display of colourful meteors and fireballs.

The source of the Perseids is dust and debris contained in a relatively dense ‘cloud’ impacting the upper atmosphere of the planet and burning up due to rapid deceleration due to increased aerodynamic drag. The shower has been observed for millennia,  the first recorded sighting was in 69 BC, and most of the dust and debris responsible for the shower was pulled off a comet a thousand years ago. The particles that produce this astronomical light-show are generally tiny, on the order of centimetres, and pose little threat to the Earth below.  However,  the same cannot be said for their parent, comet Swift-Tuttle.

Composite Image of The Perseid Meteor Shower from Mount Hood (Gary Randall, 2012)

Comet Swift Tuttle (designation: 109P/Swift–Tuttle) is a typical Halley-like long period comet. It tears through the inner solar system when nearing the closest approach of its 133 year orbit around the Sun; an orbit that takes it out 12 AU past Pluto to 51 AU, and all the way back again.  Its last close encounter with Earth was in 1992, and it won’t return until 2126.

For a while following its rediscovery in 1992, almost 10 years away from its expected position, the orbital evolution of the comet was not well constrained and there was considerable cause for alarm when it was estimated to be on a collision course with Earth in 2126. Concern was justified:  its nucleus is 26km in diameter, considerably larger than the 10 km impactor that is thought to have caused the Cretaceous-Paleogene (K-T) mass extinction event 65 million years ago. However, reanalysis of ancient records of observations and improved calculations that included the effects of nucleus evaporation confirmed that the comet is on a very stable orbit and poses little threat to Earth for the next 2000 years.

That said, in a 1997 book by South African/American radio astronomer Gerrit Verschuur, comet Swift-Tuttle was described as the most dangerous object known to man for it’s ability to cause catastrophic damage if it was to impact the Earth. An exceptionally close encounter is expected in 4479, bringing Swift Tuttle to within 0.03 AU (approximately 4 million km) of the Earth – roughly 10 times the mean Earth-Moon distance. Travelling at a relative velocity of 60 km per second, Swift-Tuttle would unleash the equivalent of a devastating 3.2×1015 tons of TNT upon impact – 27 times the energy of the K-T impactor. For comparison, the largest nuclear weapon ever detonated was a ‘mere’ 50 megatons (106). It would very likely cause huge loss of life across the planet and result in a mass extinction unlike any known previously, whilst placing unbridled pressure on the capacity for human civilisation to recover. If the initial impact was survived, tsunamis, wildfires, earthquakes, years of darkness and a toxic atmosphere would follow. Harvard astrophysicist John Chambers estimates the chance of collision in 4479 to be 1 in 1,000,000. Best of luck to our descendants 2467 years from now!

It is worth bearing this in mind when you gaze up over the next few nights to witness the magnificent sight of the ancient dust of this comet burning up in our atmosphere, for one day their parent may put on a somewhat more spectacular, if devastating, show.